Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.

Identifieur interne : 002807 ( Main/Exploration ); précédent : 002806; suivant : 002808

Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.

Auteurs : D. Lindtke [Suisse] ; S C González-Martínez ; D. Macaya-Sanz ; C. Lexer

Source :

RBID : pubmed:23860234

Descripteurs français

English descriptors

Abstract

Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees.

DOI: 10.1038/hdy.2013.69
PubMed: 23860234
PubMed Central: PMC3833683


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.</title>
<author>
<name sortKey="Lindtke, D" sort="Lindtke, D" uniqKey="Lindtke D" first="D" last="Lindtke">D. Lindtke</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
</author>
<author>
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
</author>
<author>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23860234</idno>
<idno type="pmid">23860234</idno>
<idno type="doi">10.1038/hdy.2013.69</idno>
<idno type="pmc">PMC3833683</idno>
<idno type="wicri:Area/Main/Corpus">002536</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002536</idno>
<idno type="wicri:Area/Main/Curation">002536</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002536</idno>
<idno type="wicri:Area/Main/Exploration">002536</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.</title>
<author>
<name sortKey="Lindtke, D" sort="Lindtke, D" uniqKey="Lindtke D" first="D" last="Lindtke">D. Lindtke</name>
<affiliation wicri:level="4">
<nlm:affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg</wicri:regionArea>
<orgName type="university">Université de Fribourg</orgName>
<placeName>
<settlement type="city">Fribourg</settlement>
<region nuts="3" type="region">Canton de Fribourg</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
</author>
<author>
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
</author>
<author>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
</author>
</analytic>
<series>
<title level="j">Heredity</title>
<idno type="eISSN">1365-2540</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromosome Mapping (methods)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Genetic Linkage (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Microsatellite Repeats (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (genetics)</term>
<term>Quantitative Trait Loci (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cartographie chromosomique (méthodes)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Liaison génétique (MeSH)</term>
<term>Locus de caractère quantitatif (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (génétique)</term>
<term>Répétitions microsatellites (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Chromosomes, Plant</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromosomes de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie chromosomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genetic Linkage</term>
<term>Genotype</term>
<term>Microsatellite Repeats</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Génotype</term>
<term>Liaison génétique</term>
<term>Locus de caractère quantitatif</term>
<term>Populus</term>
<term>Répétitions microsatellites</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23860234</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-2540</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>111</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Heredity</Title>
<ISOAbbreviation>Heredity (Edinb)</ISOAbbreviation>
</Journal>
<ArticleTitle>Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.</ArticleTitle>
<Pagination>
<MedlinePgn>474-85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1038/hdy.2013.69</ELocationID>
<Abstract>
<AbstractText>Uncovering the genetic architecture of species differences is of central importance for understanding the origin and maintenance of biological diversity. Admixture mapping can be used to identify the number and effect sizes of genes that contribute to the divergence of ecologically important traits, even in taxa that are not amenable to laboratory crosses because of their long generation time or other limitations. Here, we apply admixture mapping to naturally occurring hybrids between two ecologically divergent Populus species. We map quantitative trait loci for eight leaf morphological traits using 77 mapped microsatellite markers from all 19 chromosomes of Populus. We apply multivariate linear regression analysis allowing the modeling of additive and non-additive gene action and identify several candidate genomic regions associated with leaf morphology using an information-theoretic approach. We perform simulation studies to assess the power and limitations of admixture mapping of quantitative traits in natural hybrid populations for a variety of genetic architectures and modes of gene action. Our results indicate that (1) admixture mapping has considerable power to identify the genetic architecture of species differences if sample sizes and marker densities are sufficiently high, (2) modeling of non-additive gene action can help to elucidate the discrepancy between genotype and phenotype sometimes seen in interspecific hybrids, and (3) the genetic architecture of leaf morphological traits in the studied Populus species involves complementary and overdominant gene action, providing the basis for rapid adaptation of these ecologically important forest trees. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lindtke</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Unit of Ecology and Evolution, Department of Biology, University of Fribourg, Fribourg, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>González-Martínez</LastName>
<ForeName>S C</ForeName>
<Initials>SC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Macaya-Sanz</LastName>
<ForeName>D</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lexer</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D023362">Evaluation Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Heredity (Edinb)</MedlineTA>
<NlmUniqueID>0373007</NlmUniqueID>
<ISSNLinking>0018-067X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008040" MajorTopicYN="N">Genetic Linkage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="Y">Quantitative Trait Loci</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>01</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23860234</ArticleId>
<ArticleId IdType="pii">hdy201369</ArticleId>
<ArticleId IdType="doi">10.1038/hdy.2013.69</ArticleId>
<ArticleId IdType="pmc">PMC3833683</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 2005 Apr;169(4):2225-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15545657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2005 Jan;76(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15540159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Aug;164(4):1567-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12930761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jun;152(2):713-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10353912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Sep;13(9):2505-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15315666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2003 Jun;72(6):1492-1504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12817591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Nov;10(11):783-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19834483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2004 May;74(5):965-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15088268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Jul 1;24(13):1552-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18450810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2002 Jan;3(1):11-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11823787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2005 Apr;14(4):1045-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15773935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3209-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3023-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18579476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2006 Sep;75(5):1182-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16922854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 2002 Mar;159 Suppl 3:S36-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 1994 Jan-Feb;85(1):59-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8120361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2010 Oct;186(2):699-712</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20679517</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 Feb;37(2):177-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15665825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2001;35:303-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11700286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 1998 Jul;63(1):241-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Aug;149(4):2099-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9691061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genomics Hum Genet. 2010;11:65-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20594047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 Jul 1;16(7):343-350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1998 Feb;80 ( Pt 2):137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9503632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Feb;26(2):54-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Oct;21(20):5042-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol Notes. 2007 Jul 1;7(4):574-578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18784791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1993;27:205-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8122902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2012 Nov;21(21):5265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22681397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1988 Dec;85(23):9119-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3194414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Sep;29(9):1730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16913862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2013 Sep;67(9):2498-514</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24033163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1994 Nov;138(3):963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7851788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 1999 Oct;83 ( Pt 4):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10583537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 May;149(1):367-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9584110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jan;154(1):299-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10628989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2013 Feb;22(3):842-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22967258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2011;86(4):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22214594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Heredity (Edinb). 2007 Feb;98(2):74-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16985509</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Evol Biol. 2011 Apr;24(4):699-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21272107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Dec;23(12):686-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18845358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2008 Jan;23(1):38-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
<region>
<li>Canton de Fribourg</li>
</region>
<settlement>
<li>Fribourg</li>
</settlement>
<orgName>
<li>Université de Fribourg</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Gonzalez Martinez, S C" sort="Gonzalez Martinez, S C" uniqKey="Gonzalez Martinez S" first="S C" last="González-Martínez">S C González-Martínez</name>
<name sortKey="Lexer, C" sort="Lexer, C" uniqKey="Lexer C" first="C" last="Lexer">C. Lexer</name>
<name sortKey="Macaya Sanz, D" sort="Macaya Sanz, D" uniqKey="Macaya Sanz D" first="D" last="Macaya-Sanz">D. Macaya-Sanz</name>
</noCountry>
<country name="Suisse">
<region name="Canton de Fribourg">
<name sortKey="Lindtke, D" sort="Lindtke, D" uniqKey="Lindtke D" first="D" last="Lindtke">D. Lindtke</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002807 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002807 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23860234
   |texte=   Admixture mapping of quantitative traits in Populus hybrid zones: power and limitations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23860234" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020